Computing subalgebras and $\mathbb{Z}_2$-gradings of simple Lie algebras over finite fields

نویسندگان

چکیده

This paper introduces two new algorithms for Lie algebras over finite fields and applies them to the investigate known simple of dimension at most $20$ field $\mathbb{F}_2$ with elements. The first algorithm is a approach towards construction $\mathbb{Z}_2$-gradings algebra characteristic $2$. Using this, we observe that each has $\mathbb{Z}_2$-grading determine associated superalgebras. second allows us compute all subalgebras field. We apply this subalgebras, maximal subquotients $16$ (with exception $15$-dimensional Zassenhaus algebra).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On permutably complemented subalgebras of finite dimensional Lie algebras

Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...

متن کامل

Fine Gradings on Simple Classical Lie Algebras

The fine abelian group gradings on the simple classical Lie algebras (including D4) over algebraically closed fields of characteristic 0 are determined up to equivalence. This is achieved by assigning certain invariant to such gradings that involve central graded division algebras and suitable sesquilinear forms on free modules over them.

متن کامل

On the Cartan Subalgebras of Lie Algebras over Small Fields

In this note we study Cartan subalgebras of Lie algebras defined over finite fields. We prove that a possible Lie algebra of minimal dimension without Cartan subalgebras is semisimple. Subsequently, we study Cartan subalgebras of gl(n, F ). AMS classification: 17B50

متن کامل

Jordan Gradings on Exceptional Simple Lie Algebras

Models of all the gradings on the exceptional simple Lie algebras induced by Jordan subgroups of their groups of automorphisms are provided.

متن کامل

Classification of Good Gradings of Simple Lie Algebras

We study and give a complete classification of good Zgradings of all simple finite-dimensional Lie algebras. This problem arose in the quantum Hamiltonian reduction for affine Lie algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematics

سال: 2022

ISSN: ['2336-1298', '1804-1388']

DOI: https://doi.org/10.46298/cm.10193